Targeting mutated isocitric dehydrogenase 1 (mIDH 1) in acute myeloid leukemia (AML): story of ivosidenib

Chinmoy K Bose¹, Nirban Basu², Mohini Basu³
¹The Central Drugs Standard Control Organisation (CDSCO)
²Senior Resident in Surgery, Medical College Calcutta, India
³Université Bourgogne Franche-Comté (UBFC), Dijon, France

In 2008, mutations in isocitric dehydrogenase 1 & 2 (mIDH 1 & 2) was first detected in glioblastoma multiforme (GBM) from among many types of solid tumour. Next year i.e. in 2009 acute myelogenous leukemia (AML) showed presence such mutation. mIDH 2 blocker enasidenib came into market for the first time for adult recurrent and relapsed AML in 2017. But mIDH 1 blocker ivosidenib (AG-120) is approved in 2019 in recurrent and relapsed AML. In the end 2019 it was approved for untreated adult AML. When it was in early phase trial it became eligible for special expanded access program as it showed encouraging results. Drug molecule's progress through preclinical and regulatory path is interesting. It is worthwhile to look into how it received market authorization while phase III trial was not over. Trial of both GBM and AML started in March 2014. Circumstances behind ivosidenib being first approved in adult recurrent and relapsed AML rather than in glioma where the mutation was first found are also discussed.

Key words: ivosidenib, IDH 1 & 2, AML, Glioma.

Introduction
Acute myeloid leukemia (AML) is a severe form of acute haematological malignancy, especially for elderly patients who account for over 85% of diagnoses. Standard induction therapy with intensive cytotoxic chemotherapy for AML had remained unchanged for over four decades. While overall survival rates for patients aged 65 to 74 years have improved modestly over the last four decades, they remain unacceptably low with one year and five year survival rate are 30% and less than 10% respectively (1). Hence, second line therapy was an unmet need which could not be addressed for a long time. In a seminal study in Johns Hopkins Kimmel Cancer Centre recurrent mutations in the active site of isocitrate dehydrogenase 1 (IDH1) in 12% of patients was shown among more than twenty thousand genes in 22 primary and secondary human glioblastoma multiforme samples in 2008 (2). In 2009, Madris et al (3) at Washington...
University, St. Louis showed the same mutation in acute myeloid leukemia genome.

Mutations in IDH1 occurred in a large fraction of young patients and in most patients with secondary GBMs and were associated with an increase in overall survival. But in AML with IDH1 mutation had worse survival. Mutations in the active site of IDH1 at position R172 was discovered later in 2009 during an integrated genomic analysis (4). In 2009, an analogous mutation in the IDH2 gene at position R172 was discovered in patients with gliomas including astrocytomas and oligodendrogliomas (5), mutations in both R172 and R140 are found in approximately 15–20% of patients with acute myeloid leukemia (AML) (6,7). Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myeloid leukemia with isocitrate dehydrogenase 1 and 2 mutations (8) as a result of this finding treatment in about 20% of this cancer with mutation in IDH1 and 2 is revolutionized. This shift in paradigm has made use of targeted therapy possible with revolutionary effect when used alone or in conjunction with less cytotoxic chemotherapy.

Mutations 1 and 2 in IDH (mIDH 1 & 2) lead to production of an oncometabolite, 2-hydroxyglutarate (2HG), which exerts its pro-tumor effects, by regulating epigenetic enzymes. And they have now been targeted producing two drugs in quick succession in adult recurrent and relapsed AML. mIDH 2 blockerenasidenib came first in 2017. mIDH 1 blockerivosidenib is just approved in adult recurrent and relapsed AML. It did so well in early phase trial and in special expanded access program that it is in the market while phase 3 trial was not over.

Ivosidenib (AG-120), Mutated Isocitric Dehydrogenase 1 (mIDH 1) inhibitor

While susceptible IDH1 mutation could be detected by an FDA-approved test the targeted therapy for this mutation ivosidenib was finally approved by FDA in 20 July of 2018 in relapsed/refractory adult AML. Approval was based on an open-label, single-arm, multicenter clinical trial (AG120-C-001, NCT02074839) that included 174 adult patients with relapsed or refractory AML. The median treatment duration was 4.1 months (range, 0.1 to 39.5 months). Twenty-one of the 174 patients (12%) received a stem cell transplant following ivosidenib treatment. FDA approved Abbott’s RealTime IDH1 Assay for using ivosidenib in second line in AML treatment for those who relapsed or were refractory to first line therapy. (9) Ivosidenib is orally active. It’s dose is 500 mg. It can be continued as long it responds and does not produce any serious adverse event where physician decides against continuing therapy. It is also stopped in case transplantation is decided. The median treatment duration was 4.1 months (range, 0.1 to 39.5 months). Twenty-one of the 174 patients (12%) received a stem cell transplant following ivosidenib treatment. Efficacy was established on the basis of the rate of complete remission (CR) plus complete remission with partial hematologic recovery (CRh), CR+CRh duration, and the rate of conversion from transfusion independence to independence. The CR+CRh rate was 32.8% (95% CI: 25.8–40.3%). This drug responds by approximately 2 months and remains effective 8.2 months on average (95% CI: 5.6–12 months). 110 patients who were treated with regular blood or platelet transfusion 37.3% that is 41 cases did not require transfusion any more. Also other 38 patients (59.4%) of total 64 became stable and did not deteriorate.

The most common adverse reactions (≥20%) were fatigue, differentiation syndrome, leukocytosis, arthralgia, diarrhea, dyspnea, edema, nausea, mucositis, electrocardiogram QT prolonged, rash, pyrexia, cough, and constipation. The recommended ivosidenib dose of 500 mg orally once a day is continued for at least 6 months so that response becomes evident.

Ivosidenib (AG-120) in glioblastomas

In a genomewide analysis, somatic mutations at codon 132 of the isocitrate dehydrogenase 1 gene (IDH1) was identified in approximately 12% of glioblastomas. Thus more than 80% secondary glioblastomas may show the mutation. Even certain percentage of low-grade glioma with IDH1 mutation may progression to a glioblastoma. (5) Glioblastoma multiforme (GBM) is the most common and lethal type of brain cancer. Genetic alterations in GBMs could be detected (2) by sequencing 20,661 protein coding genes. Both amplifications and deletions was detected by next gen sequencing in 22 human tumor samples as described already. This led to the discovery of a variety of genes that were not known to be altered in GBMs namely recurrent mutations in the active site of isocitrate dehydrogenase 1 (IDH1) in 12% of GBM patients. Mutations in IDH1 were found mostly in young patients and in many patients with secondary GBMs. An increase in overall survival was noticed in them establishing value of unbiased genomic analyses in analyzing brain tumour and identifying potentially useful genetic alteration important for subtyping and finding targeted therapy of GBMs (8). This might have posed some difficulty to infer from the trial of ivosidenb in GBM.

Ivosidenib (AG-120) in acute myelogenous leukemia (AML)

IDH1/2 mutations are known to be heterozygous in nature. They affect a single arginine residue. Of many types of solid tumours tested Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) were detected glioblastoma only. IDH1 mutations were identified later in 8% of acute myelogenous leukemia (AML) patients. An IDH1 mutation is gain-of-function in nature. Abnormal production and accumulation of 2-hydroxylglutarate (2-HG) is noticed in cells with such mutation. 145 cases AML marrow biopsies were subjected to genotyping. It identified 11 cases where IDH1 R132 mutation was present. Likewise liquid chromatography-mass spectrometry was done as metabolite screening. It revealed increased 2-HG levels in IDH1 R132 mutant cells and sera. Astonishingly, two cases were detected where IDH2 R172K mutations were shown. IDH1/2 mutations were associated with normal karyotypes. Recombinant IDH1 R132C and IDH2 R172K proteins catalyze the novel nicotinamide adenine dinucleotide phosphate (NADP+)-dependent reduction of α-ketoglutarate to 2-HG. It could be proved that IDH1 R132C mutation commonly found in AML reduces the affinity for isocitrate, and increases the affinity for NADPH and α-KG. Oxidative decarboxylation of isocitrate to α-KG is prevented and instead conversion of α-KG to 2-HG is precipitated. IDH1/2 mutations confer an enzymatic gain of function that dramatically increases 2-HG in AML. This provides an explanation for the heterozygous acquisition of these mutations during tumorigenesis. 2-HG is an easily
detected metabolic biomarker of mutant IDH1/2 enzyme activity. (6) Unlike GBM in AML patients, IDH1 mutations were associated with a lower complete remission rate (risk ratio 1.30, 95% CI: 1.04–1.63) (10). Though later response rate and OS for both IDH-mutated and IDH wild-type AML patients was found almost same but there was no improvement noted in mutation like in GBM (11).

Clinical Trial History

Relapsed or refractory acute myeloid leukemia (AML)

Phase 1 trial: Drug that inhibits the action of mutant isocitrate dehydrogenase 1 (IDH1) has successfully undergone preclinical study with benefit in invivo and animal model thus raising hope for treating patients with AML. Clinical early phase I trial showed positive result according to preliminary studies. Trial of orally administered AG-120 in subjects with advanced solid tumors, including glioma, with an IDH1 mutation also started at about same time (March 2014).

In this first human phase I clinical trial of an IDH1-mutant inhibitor, 17 subjects with relapsed or refractory AML and IDH1 mutations were recruited. Patients were put in one of four groups that received AG-120 (Agios Pharmaceuticals; Cambridge, MA) in escalating doses. In the trial, NCT02073994 since March 2014 till end of October 17, 4 patients out of 7 had complete remission. The findings were presented at the 26th Symposium on Molecular Targets and Cancer Therapeutics in Barcelona, Spain, sponsored by the European Organization for Research and Treatment of Cancer, the NCI, and the American Association for Cancer Research. AG-120 was given 100 mg twice daily, or 300 mg, 500 mg, or 800 mg once daily, for 28 days continuously per cycle. Maximum tolerated dose was not achieved and one dose limiting toxicity was found.

Phase 3 trial: Ivosidenib expanded access program in relapsed/refractory AML with an IDH1 mutation. But NCT03245424 is not a phase III trial. It was first submitted on August 7, 2017 and first posted on August 10, 2017. (Last Update Posted Date July 24, 2018). By this time on July 20 2018 company got market authorization for sale worldwide in above indication.

Patients who were eligible for enrollment were entered into the study. Single strength dose of 500 mg by mouth once daily was decided on 28-day Cycles. Depending on progression, toxicity, choice to continue, transplant, death, etc study would progress till marketing authorization. Safety assessments was performed at intervals per institutional standard of care for patients taking ivosidenib. These assessments as usual should included, but were not limited to: pregnancy tests, ECG, clinical lab assessments, vital signs and physical exam findings, and assessment of adverse events of special interest (AESIs)/serious adverse events (SAEs). Toxicity severity was graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events (NCI CTCAE) version 4.03.

On May 2, 2019, the Food and Drug Administration approved ivosidenib (TIBSOVO, Agios Pharmaceuticals, Inc.) for newly-diagnosed acute myeloid leukemia (AML) with a susceptible IDH1 mutation, as detected by an FDA-approved test, in patients who are at least 75 years old or who have comorbidities that preclude the use of intensive induction chemotherapy. Approval was based on an open-label, single-arm, multicenter clinical trial (Study AG120-C-001, NCT02047839, 291 participants) of single-agent ivosidenib for newly-diagnosed AML with an IDH1 mutation (12) detected by the Abbott RealTimeTM IDH1 Assay.

Presently two phase III trials are recruiting (NCT03839771 & NCT03173248). However, none of them is for relapsed recurrent or refractory AML but for newly diagnosed cases. First study is of Ivosidenib or Enasidenib in combination regular therapy on such patients having IDH1 or IDH2 Mutation (HOVON150AML). Sponsor is Stichting Hemato-Oncologie voor Volwassenen Nederland and Collaborator is Deutsch-Österreichische Studiengruppe Akute Myeloische Leukamie (AMLSG). Other study is sponsored by the original Agios Pharmaceutical, Inc. This a phase 3, multicenter, double-blind, randomized, placebo-controlled study of Ivosidenib or Enasidenib in combination with induction therapy and consolidation therapy followed by maintenance therapy in patients with newly diagnosed acute myeloid leukemia or myelodysplastic syndrome with excess blasts-2, with an IDH1 or IDH2 mutation. These are fairly big studies and will take few more years to be completed.

Glioblastoma

Phase 1 trial: On the other hand Agios Pharmaceuticals, Inc. started a phase 1, multicenter, open-label, dose-escalation and expansion, safety, pharmacokinetic, pharmacodynamic, and clinical activity study of orally administered AG-120 in subjects with advanced solid tumors, including glioma, with an IDH1 mutation (NCT02073994). The purpose of this Phase I, multicenter study was to evaluate the safety, pharmacokinetics, pharmacodynamics and clinical activity of AG-120 in advanced solid tumors, including glioma, cholangiocarcinoma, chondrosarcoma and other advanced solid tumors those harbor an IDH1 mutation. The first portion of the study was a dose escalation phase where cohorts of patients would receive ascending oral doses of AG-120 to determine maximum tolerated dose (MTD) and/or the recommended phase II dose. The second portion of the study is a dose expansion phase where four arms of patients will receive AG-120 to further evaluate the safety, tolerability, and clinical activity of the recommended Phase II dose. Anticipated time on study treatment is until disease progression, unacceptable toxicity occurs or at Investigator discretion. 170 participants would be the target. Study start date was March 2014. But estimated study completion date is June 2021. As of the data cut off, 35 patients (11 from escalation, 24 from expansion) with non-enhancing disease have been treated with single agent ivosidenib. Eighteen patients (51%) remained on treatment. Twenty-four patients had (WHO) classified Grade 2 tumors, eight had Grade 3 tumors, one had a Grade 4 tumor and two were unknown. Patients received daily doses of ivosidenib ranging from 300 mg to 900 mg. Twenty-eight patients received a daily dose of 500 mg, which was selected as the expansion dose. The median age of these patients is 38 (ranging from 21–71). The median treatment duration was 16 months (ranging from 1.4 – 271 months). The median number of prior therapies was 2 (ranging from one to five). The median duration of last systemic therapy was 96 months. Sixty-three percent of patients had previously received temozolomide and 57% percent had previously received radiotherapy. A safety analysis conducted for all 35 treated non-enhancing glioma patients as of the data cut-off demonstrated that ivosidenib was well-tolerated with a favorable safety profile in glioma patients. No dose limiting toxicities were observed. The majority of adverse events reported by investigators were mild to moderate, with the most common being headache, diarrhea, nausea and vomiting. There were 5 patients with serious
adverse events (SAE) and all were deemed unre-
related to study treatment.

Efficacy data from all 35 non-enhancing glio-
ma patients as of the data cut-off showed that
two patients had a minor response by investi-
gator assessment according to the Response
Assessment in Neuro-Oncology for low grade
glioma (RANO-LGG). Twenty-nine (83 %) patients
had stable disease. The median progression free
survival (PFS) for all non-enhancing patients was
13 months, the median PFS for Grade 2 patients
(n = 24) has not been reached. For patients in the
expansion arm (n = 24), the average six-month
tumor growth was 24 % prior to treatment and
11 % following treatment with ivosidenib.

This study (NCT02073994) also started in March
2014 but even an extensive recent review (13) could
not throw any light as to why this trial was not gi-
ven any boost and why ivosidenib is not yet appro-
ved by FDA for GBM. It appears that like early phase
trials of many similar molecule such as DS-101b,
IDH305, and FT-2012, Enasidenib, and BAY-1436032
(ClinicalTrials.gov NCT03030066, NCT02381886,
NCT03684811, NCT02273739, NCT02746081) ivosi-
denib in glioblastoma multiforme is “currently without
early results”. Another such molecule is vorasidenib or AG-881 which need special men-
tioning as this molecule can cross blood brain
barrier more easily.

AG-881
AG-881, a brain-penetrant pan-IDH inhibitor
along with ivosidenib in an orthotopic mouse
xenograft model of human miDHI-R132H glioma
was studied. Preliminary data suggested that both
molecules suppress the oncometabolite D-2-
hydroxyglutylurate (2-HG) in an orthotopic brain
tumor model. At the doses explored, treatment
with ivosidenib resulted in 85 % maximal 2-HG
inhibition and treatment with AG-881 resulted in
> 98 % inhibition of 2-HG levels. Neither molecule
implied the therapeutic effect of concomitant or
sequential radiation therapy. There are two trials,
which are in early phase and probably without
result till date. A phase 1, multicenter, open-label,
dose-escalation and expansion, safety, pharma-
cokinetic, pharmacodynamic, and clinical activity
study of orally administered AG-881 in patients
with advanced solid tumors, including gliomas,
with an IDH1 and/or IDH2 mutation among 150 participants (NCT02481154). Study Start Date was
June 2015. Estimated Study Completion Date is
October 2018. Manufacturer planned to initiate
a perioperative ‘window’ study in the first half of
2018 with ivosidenib and AG-881 in approximately
45 low grade glioma patients with progressive
disease to further investigate their effects on brain
tumor tissue. This trial is recruiting. Patients will be
randomized to either ivosidenib or AG-881 and treated for four weeks prior to previously sched-
uled surgery. An additional five patients will serve
as a control arm. The study is designed with the
objective to determine the amount of drug pene-
tration in the brain by confirm the magnitude of
IDH target engagement as measured by 2HG levels
in brain tumor tissue. It will assess the impact of
IDH inhibition on differentiation and epigenetic
profiles in tumor tissue and the safety of both
molecules. The other one is NCT03343197, a phase
1, multicenter, randomized, and controlled, open-
label, perioperative study of AG-120 and AG-881
in subjects with recurrent, non-enhancing, IDH1
mutant, low grade glioma. But like all other GBM
the results are still far from complete.

Cholangiocarcinoma
ivosidenib on the other hand almost com-
pletes phase III trial, NCT02989857 on previou-
sly treated nonresectable or metastatic cho-
langiocarcinoma with a IDH1 mutation. It was
presented at the recent European Society for
Medical Oncology Congress (ESMO 2019) in
Barcelona. It nearly doubled progression-free
survival time, from a median of 1.4 to 2.7 months,
meaning people randomly assigned to receive
the drug were still alive without disease pro-
gression about twice as long as placebo recipi-
ents. Experts said the results could potentially
change standard practice. Hence it appears that
it will soon get approval for appears second
line cholangiocarcinoma with a specific genetic
mutation.

Conclusion

Hence, though IDH1 and 2 mutations were first
detected in gliomas, the trial with glioma could not answer queries as satisfactorily as the
trials on AML could do. This could be due to
different factors like inherent role of such mutation in protection and better survival of GBM. This
might have confused the calculation needed to
present any concrete result with statistical
sanction. As a result more elaborate study with
more patients are required. On the contrary
it is marketed first for relapsed/refractory and
later for newly diagnosed AML for straight cut
favorable results. It seems is at least not until
2021 that they will be approved for GBM which
may even more delayed in this time of turmoil
due covid-19 pandemic.

Compliance with Ethical Standards

Funding: nil

Conflict of Interest: Authors A & B declare that
they have no conflict of interest.

Ethical approval: This article is a review and does
not contain any studies with human participants
or animals performed by any of the authors.

REFERENCES
Strategies for Elderly Leukemia Patients with IDH Mutations.
2. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, et al. An in-
tegrated genomic analysis of human glioblastoma multiforme.
3. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen
Prognostic significance of IDH1 mutations in acute myeloid
5. James AR, Javanbakht Y, Jeng SS, Cheung A, Goldstone AH,
Ladanyi M, et al. MLL-mutation status is a independent predictor of
overall survival in acute myeloid leukaemia: a meta-analysis of 1505
6. Gross S, Caissi R, Minden MD, Driggers EM, Bittinger MA,
Jiang HG, Susaki M, Jin S, Schenklen DR, Su SM, Dang L, Fantin VR,
Mak TW. Cancer-associated metabolite 2-hydroxyglutarate accu-
mulates in acute myelogenous leukemia with isocitrate dehydro-
7. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Co-
ller HA, Cross JR, Fanin VS, Hedvat CV, Perl AE, Rabiuwitz JD,
Carroll M, Su SM, Sharp KA, Levine RL, Thompson CB. The common
feature of leukemia-associated IDH1 and IDH2 mutations is a
nonsense enyme activity converting alpha-ketogluta-
8. DiNardo CD, Stein EM, de Bottis S, Roboz GI, Altman JK, Mims
AS et al. Durale Remissions with ivosidenib in IDH1-Mutated
9. https://www.fda.gov/Drugs/InformationOnDrugs/Appro-
vizedDrugsUcm641128.htm accessed last on 22/8/18.
10. Feng JH, Gou XP, Chen YY, Wang ZI, Cheng YP, Tang YM.
Prognostic significance of IDH1 mutations in acute myeloid
11. DiNardo CD, Ravandi F, Agresta S et al. Characteristics, clin-
ic outcome, and prognostic significance of IDH1 mutations in
12. https://www.fda.gov/drugs/resources-information-appro-
vized-drugs/fda-approves-ivosidenib-first-line-treatment-a-
ih1-mutation.
13. Golub D, Jengar N, Dogra S, et al. Mutant isocitrateg De-
hydrogenase Inhibitors as Targeted Cancer Therapeutics.
fonc.2019.00417.